Перейти к содержимому

Поиск по сайту

Результаты поиска по тегам 'ии'.

  • Поиск по тегам

    Введите теги через запятую.
  • Поиск по автору

Тип публикаций


Категории и разделы

  • Оффлайн покер
    • PokerDom - генеральный партнер APoker.kz
    • Главный форум
    • Электронный покер
    • Оффлайн серии и турниры
    • Дневники игроков
  • Онлайн Покер
    • Школа покера
    • Онлайн турниры, кеш и S'n'G
    • Китайский покер
  • Покерные румы, платежные системы и софт
    • Онлайн покер румы
    • Софт, программы, электронные деньги
  • Вокруг Покера
    • Околопокерные темы
    • Онлайн и оффлайн казино, автоматы, рулетка
    • Поговорим за жизнь
    • Работа сайта и форума

Категории

  • Покерные ВОДы (VODs) и обучающее видео
    • МТТ
    • Кэш
    • СНГ
  • Финальные столы казахстанцев
  • partypoker EAPT Казахстан, Боровое, октябрь'17
  • EAPT Cash Ville Боровое, апрель'17
  • EAPT Casino Bombay Капчагай, июль'16
  • EAPT Casino CashVille Боровое, апрель'16
  • Чемпионат Казахстана по покеру, март'14
  • partypoker MILLIONS Russia Сочи: август'18
  • WSOP Curcuit Russia, май '18
  • EAPT Russia Алтай, октябрь'16
  • EPT Сочи, март'18
  • EAPT Snowfest Сочи, февраль'18
  • partypoker MILLIONS Russia Сочи, сентябрь'17
  • partypoker Million Сочи, март'17
  • EAPT Sochi Casino & Resort, январь'17
  • PokerStars Championship Багамы 2017
  • PokerStars Championship Сочи, май'17
  • PokerStars Festival Сочи, октябрь'17
  • PokerStars Championship Барселона 2017
  • EPT 11: 2014-2015
  • EPT 12: 2015-2016
  • EPT 13: 2016
  • PokerStars Caribbean Adventure
  • WSOP 2014
  • WSOP 2015
  • WSOP 2016
  • WPT & Live Events Montenegro 2015
  • Aussie Millions 2012
  • Aussie Millions 2016
  • Poker After Dark
  • WPT 2016-2017
    • Borgata Poker Open 2016
    • WPT Borgata Winter Poker Open
  • King's Casino - Cash Games
  • Лучшие покерный клипы
  • Фильмы о покере
  • Песни о покере

Календари

  • Community Calendar
  • Оффлайн события
  • Акции

Категории

  • Книги по покеру на русском языке
  • Покер-румы



Фильтр по количеству...

Найдено 2 результата

  1. В журнале Science вышла статья, где описывается принцип работы системы искусственного интеллекта Libratus. В начале года она победила в 20-дневном покерном турнире и выиграла у профессиональных игроков в покер фишек на сумму более 1,7 миллиона долларов. Активное развитие технологий машинного обучения привело к созданию алгоритмов, которые справляются со многими задачами лучше людей. Особое внимание в этом году получили программы, которые научились обыгрывать людей в играх с неполной информацией — традиционно это считалось невозможным. В январе 2017 года система искусственного интеллекта Libratus победила в турнире по техасскому холдему, который сегодня считается наиболее популярной разновидностью покера. Во время турнира, который длился 20 дней, алгоритм заработал более 1,7 миллиона долларов в фишках. В новой статье Ноэм Браун (Noam Brown) и Туомас Сандхолм (Tuomas Sandholm), разработчики Libratus, описали, как работает алгоритм. Libratus состоит из трех основных частей. Для первых кругов покера используется модуль, который рассматривает игру как абстракцию. Вместо того, чтобы учитывать все точки принятия решений, число которых достигает 10161, он упрощает игру, при этом максимально учитывая стратегические аспекты оригинальной игры. Так, Libratus округляет ставки и не делает различий между похожими карточными комбинациями, например флэшем с королем во главе и флэшем, где старшая карта — дама. После создания абстракции, компьютер разрабатывает плановую стратегию поведения для первых кругов, а также очень приблизительную стратегию для следующих этапов. Чтобы научиться делать это, Libratus играл против самого себя, используя измененную версию алгоритма Monte Carlo Counter-factual Regret Minimization (MCCFR). С его помощью для каждого действия вычислялось значение сожаления — то, насколько игрок сожалеет о том, что он не сделал определенный шаг в прошлом. Во время симуляции MCCFR выбирал «исследователя», который должен был анализировать все возможные действия и постоянно обновлять значение сожаления. При этом его противник играл согласно стратегии, которая выстаивается на основе уже имеющихся данных. В конце «исследователю» давалась награда за каждое действие, благодаря которой он понимал, какой ход был хорошим, а какой — нет. После каждой партии игроки менялись ролями. В классическом варианте компьютер обычно исследует все гипотетические действия, чтобы выяснить размер награды за них; здесь же он пропускал «неинтересные» ходы, которые имели низкое значение сожаления, что позволило быстрее усовершенствовать его работу. Для следующих этапов игры использовался второй модуль Libratus. Он создавал детальную стратегию для конкретного этапа игры, руководствуясь при этом плановой стратегией, разработанной в начале. Каждый раз, когда противник совершал не предусмотренное системой ИИ действие, она разыгрывала «мини-игру», где учитывался ход соперника. Это позволяло корректировать стратегию в режиме реального времени. Третья часть Libratus улучшала исходную стратегию алгоритма. Обычно для этого строится модель поведения противника, которая учитывает его возможные ошибки. Однако Браун и Сандхолм использовали данные о ставках. Днем компьютер следил, какие ставки чаще всего делают другие игроки, а ночью вычислял возможные варианты развития событий с учетом этих данных. Авторы статьи считают, что у систем, подобных Libratus, большое будущее в самых разных сферах, где приходится иметь дело с неполной информацией. Они могут быть использованы в сфере информационной безопасности, в военном деле, аукционах, переговорах и даже при распределении медикаментов. Значимая победа компьютера над профессиональными игроками в игре с полной информацией произошла в 2015 году: тогда программа AlphaGo обыграла Фаня Хуэя в го — настольной игре, где противники стремятся огородить наибольшую территорию на игровой доске с помощью камней черного или белого цвета. А уже в 2017 году усовершенствованная версия AlphaGo победила другого известного игрока, Ли Седоля, которого относят к сильнейшим в мире. Теперь AlphaGo Zero научилась играть и в другие настольные игры.
  2. Сбербанк организовал хакатон, в котором специалисты по машинному обучению смогут создать игровой искусственный интеллект, способный играть в покер, говорится на странице конкурса. Призовой фонд конкурса составит 600 тысяч рублей. Участники должны будут написать бот для игры Texas Hold’em Poker, который будет соревноваться в турнирах с 8 ботами конкурентов. Программа должна в режиме реального времени принимать решения и совершать действия, направленные на победу. Результаты игр будут появляться на сайте хакатона, что позволит участникам обучать ботов и анализировать стратегии других игроков. Хакатон разделен на два этапа: онлайн и офлайн. С 30 августа разработчики смогут отправлять решения организаторам. Эта часть соревнования завершится 15 сентября в 23.59 по московскому времени, после чего Сбербанк составит рейтинг участников и выберет 100 финалистов, которые примут участие в офлайн-хакатоне. Вторая часть мероприятия, в ходе которой финалисты смогут доработать алгоритмы в командах, начнется 23 сентября в Корпоративном университете Сбербанка (находится в Московской области), а победителей наградят 24 сентября. Победителю хакатона выплатят 300 тысяч рублей, обладателю второго места — 200 тысяч, а бронзовому призеру соревнований достанется 100 тысяч рублей. "Искусственный интеллект сегодня должен служить не только для разработки рациональных алгоритмов, но и для моделирования нерационального поведения участников рынка или, как в случае с нашим турниром, игроков в покер", - Александр Ведяхин, старший вице-президент Сбербанка. Информация о формате отправки архивов с кодом стратегии будет доступна 1 сентября. Турниры между отправленными в систему ботами будут проходить ежедневно в полночь по московскому времени. В ходе онлайн-этапа разработчики смогут загружать решения не более 5 раз в течение одних суток, однако организаторы будут учитывать только последнее решение.